Effect of non-uniform Magnetic Field on Non-Newtonian Fluid Separation in a Diffuser

Authors

Abstract:

The purpose of the present study is to investigate the boundary layer separation point in a magnetohydrodynamics diffuser. As an innovation, the Re value on the separation point is determined for the non-Newtonian fluid flow under the influence of the non-uniform magnetic field due to an electrical solenoid, in an empirical case. The governing equations include continuity and momentum are solved by applying the semi-analytical collocation method (C.M.). The analysis revealed that for specific values of De from 0.4 to 1.6, α from 20 to 2.5 and Ha from zero to 8, the Re value on the separation point is increased from 52.94 to 1862.78; thus, the boundary layer separation postponed. Furthermore, the impact of the magnetic field intensity on the separation point is analyzed from the physical point of view. It is observed the wall shear stress increases by increasing magnetic field intensity that leads to delaying the boundary layer separation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Rapid mixing of Newtonian and non-Newtonian fluids in a three-dimensional micro-mixer using non-uniform magnetic field

The mixing of Newtonian and non-Newtonian fluids in a magnetic micro-mixer was studied numerically using  ferrofluid. The mixing process was performed in a three-dimensional steady-state micro-mixer. A magnetic source was mounted at the entrance of the micro-channel to oscillate the magnetic particles. The effects of electric current, inlet velocity, size of magnetic particles, and non-Newtonia...

full text

Slip Effects on Ohmic Dissipative Non-Newtonian Fluid Flow in the Presence of Aligned Magnetic Field

The present paper deals with the effects of Ohmic dissipative Casson fluid flow over a stretching sheet in the presence of aligned magnetic field. The present phenomenon also includes the interaction of thermal radiation and velocity slip. The governing boundary layer equations are transformed into a set of ordinary differential equations using the similarity transformations. The dimensionless ...

full text

Jeffery Hamel Flow of a non-Newtonian Fluid

This paper presents the Jeffery Hamel flow of a non-Newtonian fluid namely Casson fluid. Suitable similarity transform is applied to reduce governing nonlinear partial differential equations to a much simpler ordinary differential equation. Variation of Parameters Method (VPM) is then employed to solve resulting equation. Same problem is solved numerical by using Runge-Kutta order 4 method. A c...

full text

Numerical Study on Heat Transfer of non-Newtonian Fluid Flow over Stretching Surface with Variable Viscosity in Uniform Magnetic Field

An investigation has been carried out to obtain the flow and heat transfer of two dimensional electrically conducting second grade fluids over stretching surface in the presence of uniform magnetic field. The viscosity is assumed to vary as inverse linear function of temperature. The non-linear boundary layer equations together with the boundary conditions are reduced to a system of non-linear ...

full text

Entropy generation analysis of non-newtonian fluid in rotational flow

The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 33  issue 7

pages  -

publication date 2020-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023